
GPU-based Motion Matching for Crowds in the Unreal Engine

NAGARAJ RAPARTHI, Department of Visualization, Texas A&M University
ERIC ACOSTA, Val G. Hemming Simulation Center, Uniformed Services University
ALAN LIU, Val G. Hemming Simulation Center, Uniformed Services University
TIM MCLAUGHLIN, Department of Visualization, Texas A&M University

Fig. 1. Crowd Simulation using Motion Matching

MotionMatching is a computationally expensive animation selection process
where a motion capture database is regularly searched to identify the best
frame of animation to be played. This study presents a process used to
compute these calculations in parallel by using multiple GPU threads. The
described work is shown to greatly reduce the computational time of CPU -
based Motion Matching within the Unreal Engine.

CCS Concepts: • Computation methodologies → Animation; Proce-
dural Animation.

Additional Key Words and Phrases: animation, motion matching, unreal
engine, hardware acceleration, compute shaders

ACM Reference Format:
Nagaraj Raparthi, Eric Acosta, Alan Liu, and Tim McLaughlin. 2020. GPU-
based Motion Matching for Crowds in the Unreal Engine. In SIGGRAPH
Asia 2020 (SA ’20 Posters), December 04-13, 2020. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3415264.3425474

1 INTRODUCTION
Implementing the Motion Matching technique in real-time sys-
tems leads to realistic blending between different character ani-
mations, while eliminating the tedious process of setting up multi-
dimensional blend-spaces [1]. A typical Motion Matching system
includes a cost function that takes into account trajectory, velocity
and pose data to identify the ideal pose with the minimal error
between the desired and current inputs. Motion Matching has been
shown to work well with one character; however, the computational

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SA ’20 Posters, December 04-13, 2020, Virtual Event, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8113-0/20/11.
https://doi.org/10.1145/3415264.3425474

requirements of this technique do not scale well as the number of
characters and the size of the animation database increase. Recent
works have been described to speed up Motion Matching using
techniques like k-d trees [5], voxel-based tables [4] and trajectory
clustering [6].

A learned alternative to Motion Matching using neural-network-
based generative models [2] was also recently proposed which can
replace each step in theMotionMatching process. Implementing this
requires knowledge of neural networks and other machine learning
algorithms. In the next section, we describe our approach which
can be easily integrated into a Motion Matching system available
on the Unreal Engine marketplace [3].

2 APPROACH

2.1 Game Thread and The Render Thread
The Unreal Engine divides work into game and render threads. The
Motion Matching plugin [3] performs all of it’s calculations on the
game thread. For our Motion Matching implementation, the game
thread is responsible for sending the inputs to the render thread
and playing the selected animation. The render thread performs
the animation cost calculations. Since the render thread trails the
game thread, results from the render thread are not available to
the game thread in the same frame. This is a major limitation as
MotionMatching requires current animation inputs every frame and
cannot accommodate for this one frame delay. In the next section we
describe modifications to the Motion Matching algorithm in order
to overcome this limitation.

2.2 GPU Motion Matching Implementation
GPU-based Motion Matching is performed by a compute shader.
The first step is to store the data derived from the motion captured
animations into a structured data buffer during initialization. This

1

https://doi.org/10.1145/3415264.3425474
https://doi.org/10.1145/3415264.3425474


SA ’20 Posters, December 04-13, 2020, Virtual Event, Republic of Korea Nagaraj et al.

Fig. 2. Inter-thread communication pipeline.

data includes root bone trajectory, pose positions and velocities.
Corresponding run-time parameters are sent to the GPU as shader
parameters. The compute shader is dispatched with the updated pa-
rameters. The computer shader performs calculations using thread
groups, each of which has multiple threads. The number of thread
groups and threads is specified based on the number of animation
poses within the motion captured data. This enables the cost of
every pose to be computed in parallel.
The shader code is similar to the original Motion Matching sys-

tem for calculating the cost function based on velocity, trajectory
and poses. Instead of performing these calculations linearly on the
CPU, each thread uses its thread-ID to process a specific animation
pose. The compute shader outputs the computed cost values and the
animation corresponding to the minimal cost value is played. The
cost function requires the current animation and trajectory informa-
tion. This information is available to a CPU-based Motion Matching
system as the results are processed within the same frame. In our
approach, the processed results are not available in the same frame
as the render thread executes behind the game thread. Thus, the
input trajectory information required by the GPU-based animation
database search is not available within the same frame. To overcome
this limitation, the current trajectory was substituted by the current
animation’s predicted trajectory as an input to the cost function.
The future trajectory of a given pose is comprised of 10 samples in
the future of the current pose. By utilizing an earlier sample (e.g. 9th
sample) we were able to obtain the required trajectory information.
The results were consistent when compared against the original
Motion Matching algorithm with a one frame delay.

3 RESULTS
We tested our approach on a machine with NVIDIA GeForce GTX-
980 CPU and an Intel Core i7-5690X CPU, on multiple characters

and compared our results using Unreal Engine’s profiling system.
Typically in Motion Matching, velocity and desired trajectory inputs
are taken from the user inputs at run-time. To implement the motion
matching algorithm on large sets of crowd characters, We developed
a simple AI network that moves characters to different way-points
within our game level. The desired trajectory is derived from the AI
path and avoidance forces computed by the detour crowd system.
Time taken to perform calculations is shown for upto 200 char-

acters which use the Filmstorm plugin [3], trajectory clustering
[6] and our approach. The results given for [6] are based on our
implementation of the method within the Unreal Engine. An error
threshold value of 900 was used to perform trajectory clustering,
which led to character animations consistent with the Filmstorm
Motion Matching algorithm with the same inputs. Compared to the
Filmstorm implementation, our approach decreased computation
times up-to 95%.

Fig. 3. Time taken (in ms) to perform calculations.

4 FUTURE WORK
Our current implementation dispatches a unique shader for each
character and could benefit from dispatching one shader for all
the characters to minimize inter thread communication. We are
also investigating techniques to move the entire Motion Matching
system to the GPU.

REFERENCES
[1] Michael Buttner. 2015. Motion Matching - The Road to Next - Gen Animation.

Nucl.ai Conference 2015 (2015). https://youtu.be/z_wpgHFSWss
[2] Maksym Perepichka Daniel Holden, Oussama Kanoun and Tiberiu Popa. 2020.

Learned Motion Matching. ACM Trans. Graph., Article 1 (2020), 13 pages. https:
//doi.org/10.1145/3386569.3392440

[3] Filmstorm. 2019. Motion Matching System. (2019). https://www.unrealengine.
com/marketplace/en-US/product/motion-matching-system

[4] David Hunt Michael Buttner and Richard Lico. 2018. Topics in Real-time Animation.
ACM SIGGRAPH 2018 Courses (SIGGRAPH ’18). ACM, New York, NY, USA, Article
17 (2018), 1 pages. https://doi.org/10.1145/3214834.3214882

[5] Katsuhiro Nomura. 2017. Motion Matching no Tsukurikata. Computer Entertain-
ment Developers Conference 2017 (2017). https://cedil.cesa.or.jp/cedil_sessions/
download?file_name=C17_85.pdf&path=2017%2Fcedec2017%2FC17_85.pdf

[6] Gwonjin Yi and Junghoon Jee. 2019. Search Space Reduction In Motion Matching
by Trajectory Clustering. Proceedings of SA ’19 Posters. ACM, New York, NY, USA
(2019), 2. https://doi.org/10.1145/3355056.3364558

2

https://youtu.be/z_wpgHFSWss
https://doi.org/10.1145/3386569.3392440
https://doi.org/10.1145/3386569.3392440
https://www.unrealengine.com/marketplace/en-US/product/motion-matching-system
https://www.unrealengine.com/marketplace/en-US/product/motion-matching-system
https://doi.org/10.1145/3214834.3214882
https://cedil.cesa.or.jp/cedil_sessions/download?file_name=C17_85.pdf&path=2017%2Fcedec2017%2FC17_85.pdf
https://cedil.cesa.or.jp/cedil_sessions/download?file_name=C17_85.pdf&path=2017%2Fcedec2017%2FC17_85.pdf
https://doi.org/10.1145/3355056.3364558

	Abstract
	1 Introduction
	2 Approach
	2.1 Game Thread and The Render Thread
	2.2 GPU Motion Matching Implementation

	3 Results
	4 Future Work
	References

